L’observation de la surface solaire ne présente pas de difficulté technique majeure en respectant quelques règles élémentaires de protection oculaire. Naturellement, la beauté des taches et régions actives se révélera au mieux dans un petit instrument astronomique. Dans tous les cas de figure, que l’on observe à l’œil nu ou avec un instrument d’optique (jumelles, lunette, télescope), on ne répétera jamais assez qu’une atténuation de la lumière cent mille fois est incontournable sous peine de risquer une brûlure de la rétine pouvant être irrémédiable et entraîner la perte de la vue. Le mot d’ordre est donc « attention aux yeux », et différents moyens de prévention existent, adaptés à chaque type d’observation.

Observation à l’œil nu en lumière filtrée et atténuée

L’observation directe du soleil est très dangereuse pour l’œil et nécessite un filtrage et une atténuation très sérieux du rayonnement ultra violet, visible et infrarouge, pour éviter des brûlures de la rétine pouvant provoquer des lésions irréversibles, voire la cécité totale. La protection la plus sûre consiste à se procurer des lunettes prévues pour l’observation des phases partielles des éclipses solaires, certifiées CE et constituées généralement d’écrans en Mylar ou en film polymère noir ne transmettant qu’un cent millième de la lumière (densité 5 ou ND5). Le coût unitaire avoisine les 3 Euros. D’autres systèmes, non conçus à l’origine pour l’observation du soleil, peuvent être utilisés (comme le verre de soudeur en protane 14) avec une grande prudence.

Lunettes en polymère noir
Lunettes en polymère noir
Lunettes en Mylar
Lunettes en Mylar
Verre de soudeur de grade 14
Verre de soudeur de grade 14

Observation avec un instrument

On commencera par préciser que les lunettes d’éclipse décrites ci dessus sont conçues uniquement pour l’observation à l’œil nu, et ne doivent en aucun cas être utilisées pour observer au travers un instrument d’optique, qui concentre fortement la lumière : il y a là un risque très élevé de détérioration des lunettes par échauffement qui rendrait leur protection illusoire et donc leur usage dangereux.

**Avec des jumelles

Il existe une grande variété de paires de jumelles dans une large gamme de grossissements et de luminosité. Pour observer la surface solaire, une paire de jumelles ordinaires (typiquement 8 x 40 à 10 x 50, le premier chiffre indiquant le grossissement et le second le diamètre des objectifs) est largement suffisante. Au delà de ces grossissements, il faudra utiliser un trépied pour observer confortablement. Le filtrage et l’atténuation de la lumière sont absolument obligatoires et doivent être réalisés avec grand soin. Pour ce faire, les deux objectifs devront être recouverts d’un écran protecteur en Mylar ou en polymère noir atténuant le rayonnement au moins cent mille fois (densité 5 ou ND5). Il faut être extrêmement attentif à la qualité du film protecteur utilisé et à sa bonne fixation : celui ci ne doit en aucun cas être endommagé, donc être exempt de toute micro déchirure ou micro perforation. Le Mylar ou le polymère noir peuvent s’acheter en feuilles A4 à découper aux dimensions voulues (environ 10 euros la feuille).

**Avec un « solarscope »

Le « solarscope » est un petit appareil pliable et cartonné de faible coût (environ 65 Euros) permettant une observation de groupe sans danger pour la vue par projection d’une image solaire d’environ 10 cm de diamètre sur un écran blanc. Ce système, qui présente une grande sécurité, est très recommandé pour les séances collectives d’observation (clubs d’astronomie, scolaires).

Solarscope
Solarscope

**Avec une petite lunette astronomique ou un petit télescope

Rappels sur la lunette et le télescope

Une lunette astronomique est constituée fondamentalement d’un objectif convergent (généralement un doublet achromatique à deux lentilles de focale f1) donnant une image au plan focal image (F’1) de l’objet observé. La lumière traversant l’objectif, la lunette est aussi appelée réfracteur ; l’indice de réfraction étant fonction de la longueur d’onde de la lumière, le foyer bleu n’est en général pas superposé au foyer rouge (chromatisme). Cet effet est très largement atténué par le choix d’un bon objectif à deux lentilles dit achromatique.

Schéma de principe de la lunette astronomique
Schéma de principe de la lunette astronomique
(proportions non respectées ; les rayons virtuels qui servent à placer le cercle oculaire sont en pointillés)

Dans le télescope, l’objectif dont on a parlé à propos de la lunette est remplacé par un miroir concave (sphérique ou parabolique) qui forme une image au plan focal image (F’1). On parle alors de réflecteur, puisque les rayons lumineux sont réfléchis sur la couche d’argent ou d’aluminium qui recouvre le miroir avant de converger au foyer. Il n’y a pas de chromatisme. Pour former une image à l’extérieur du tube du télescope, on interpose dans le faisceau un petit miroir dit secondaire, plan et incliné à 45° dans les montages de type Newton, convexe et travaillant en incidence normale dans les montages de type Cassegrain (le miroir primaire étant alors percé d’une ouverture circulaire en son centre). Dans le cas des systèmes Cassegrain, il existe de nombreuses variantes (Maksutov, Schmidt) avec des formules optiques différentes mettant toujours en jeu une combinaison primaire – secondaire parfois perfectionnée par une lame de fermeture correctrice de champ. Un télescope de grand diamètre (200 mm ou plus) est à privilégier pour l’observation du ciel profond ; par contre, en observation solaire ou planétaire, une lunette ou un télescope de 60 à 100 mm d’ouverture conviennent indifféremment.

Schéma de principe d'un télescope Newton
Schéma de principe d’un télescope Newton
(proportions non respectées ; les rayons virtuels qui servent à placer le cercle oculaire sont en pointillés)
Schéma de principe d'un télescope Cassegrain
Schéma de principe d’un télescope Cassegrain
(proportions non respectées ; les rayons virtuels qui servent à placer le cercle oculaire sont en pointillés)

Dans le plan focal image (F’1) de la lunette ou du télescope, on peut disposer un récepteur de lumière pouvant être constitué soit d’un plan film 24 x 36 mm, soit du capteur CCD ou CMOS d’un boîtier réflex numérique ou encore du capteur d’une Webcam (sans leurs objectifs). Au plan focal F’1, le diamètre de l’image solaire vaut a x f1, a étant le diamètre apparent du soleil (32’) mesuré en radians ; cette formule nous donne 9.3 mm x f1, f1 étant exprimée en mètres.

On peut également observer l’image formée au plan focal image (F’1) de la lunette ou du télescope au moyen d’un oculaire (qui fonctionne comme une puissante loupe) derrière lequel on placera soit son œil, soit un appareil photo numérique non réflex ou un camescope équipés tous deux de leur propre objectif. Dans ce cas, l’œil ou le dispositif d’acquisition de données devront se placer au cercle oculaire, qui constitue l’image de la pupille d’entrée de l’instrument par l’oculaire, pour recueillir le maximum de lumière.

**Rapport f/D

Une observation solaire de qualité pourra être réalisée avec une petite lunette astronomique pour laquelle on conseille un rapport f/D (distance focale divisée par le diamètre utile de l’objectif) voisin de 10 ou 12. Par exemple, une lunette dans la gamme des instruments de 60 à 80 mm d’ouverture et distance focale de 800 à 900 mm convient bien, pourvu que l’objectif soit constitué d’un doublet achromatique (à partir de 250 euros). La lunette aura avantage à être montée sur une monture bien stable, pouvant être azimuthale à mouvements lents manuels, ou mieux équatoriale motorisée en angle horaire pour suivre aisément le soleil dans son mouvement diurne (déplacement de 15° par heure ou encore de 15 secondes de degré, par seconde de temps). On peut également utiliser un petit télescope à miroirs, par exemple un classique Newton de diamètre 115 mm et de 900 mm de distance focale ou encore un Maksutov Cassegrain de diamètre 90 mm et 1200 mm de distance focale (à partir de 450 Euros avec monture basique). Notons que ces instruments, dotés d’une focale assez longue, sont également parfaits pour l’observation nocturne des planètes (mais ils ne sont pas adaptés à l’observation du ciel profond car leur luminosité sera insuffisante).

Il existe plusieurs techniques d’observation solaire que l’on va détailler maintenant.

***Observation par projection (lunettes seulement)

Cette méthode permet d’observer à plusieurs et a l’immense avantage de ne présenter aucun danger pour les yeux. Elle consiste à utiliser l’oculaire de l’instrument comme objectif de projection et n’emploie pas d’atténuateur de lumière (prudence nécessaire). Elle fournira une image de meilleure qualité que le solarscope.

La méthode d’observation par projection est formellement déconseillée dans le cas d’un télescope, en raison du risque élevé de détérioration du miroir secondaire par échauffement. En effet, le faisceau lumineux issu du miroir primaire est convergent et concentre donc beaucoup d’énergie sur le secondaire (miroir plan dans le cas d’un Newton ou courbe dans le cas d’un Cassegrain). Nous ne traiterons donc que le cas de la lunette.

Dans l’observation visuelle à l’oculaire sans accomodation (vision à l’infini pour un œil normal), le foyer objet de l’oculaire (F2) est confondu avec le foyer image (F’1) de l’objectif de la lunette (système afocal, voir figure ci-dessus), et l’on place son œil au cercle oculaire qui est l’image par l’oculaire de l’objectif, ou encore pupille (son diamètre est égal à D x (f2/f1), numériquement de l’ordre du millimètre). L’oculaire fonctionne alors comme une loupe. Dans l’observation par projection, on tire très légèrement l’oculaire par rapport à cette position de telle sorte qu’il fonctionne maintenant comme un objectif de projection ou d’agrandissement et forme une image sur un écran blanc situé à faible distance, dans l’axe optique (qui peut être coudé à 90° vers le bas à l’aide d’un renvoi pour plus de commodité). Par exemple, tirer l’oculaire de 5 % de sa distance focale seulement donne un agrandissement 20 fois, soit une image solaire d’environ 20 cm de diamètre située en arrière à 20 fois la distance focale de cet oculaire, pour un instrument dont l’objectif possède une distance focale d’un mètre.

La méthode n’utilisant pas de filtre atténuateur de lumière, on veillera en permanence à ce que personne ne vienne placer son œil dans le faisceau lumineux et on obstruera par précaution le chercheur s’il en existe un.

Projection par l'oculaire avec une lunette
Projection par l’oculaire avec une lunette
(schéma de principe, les proportions ne sont pas respectées, en particulier la distance entre F’1 et F2 est de l’ordre du millimètre)
Projection par l'oculaire avec une lunette
Projection par l’oculaire avec une lunette

***Observation à l’oculaire avec un filtre pleine ouverture (lunettes et télescopes)

On recommande le choix d’oculaires de bonne qualité à quatre lentilles dont le coût avoisine les 100 euros et de rester, sauf si l’on bénéficie de conditions d’observations exceptionnelles (faible turbulence, site de montagne), dans une gamme de grossissements autour de 100. Le grossissement étant donné par le rapport des distances focales de l’objectif de la lunette ou du télescope à celui de son oculaire (f1/f2), on constate, pour une distance focale de l’objectif voisine du mètre, qu’il faudra employer un oculaire d’environ 10 mm de focale. L’objectif de la lunette ou l’ouverture du tube du télescope doit impérativement être recouvert d’un filtre pleine ouverture, que l’on trouvera chez les revendeurs de matériel astronomique, composé d’une lame de verre à faces parallèles recouverte d’un dépôt d’aluminium ne transmettant dans l’instrument qu’environ un cent millième de la lumière solaire (coût approximatif de 75 Euros dépendant du diamètre). Ces filtres ont bien souvent des transmissions variant en fonction de la longueur d’onde de la lumière, et l’on ne s’étonnera pas d’obtenir une image orangée qui ne nuit en rien à la qualité de vision. Ils filtrent également les rayons infra rouges, ce qui est indispensable.

La méthode consistant à placer un filtre au foyer de l’instrument, dans le plan image F’1 de l’objectif, doit être absolument proscrite en raison des risques très importants de destruction du filtre par la chaleur solaire qui se concentre fortement au foyer. De même, il est déconseillé exactement pour la même raison d’utiliser des filtres se vissant directement sur l’oculaire. A défaut de filtre pleine ouverture en verre optique aluminé, on pourra recouvrir l’objectif de l’instrument de feuilles de Mylar ou de polymère noir de densité 5 (ND 5), mais il faut faire très attention à leur état et à leur bonne fixation sur l’instrument.

Lunette munie d'un filtre pleine ouverture
Lunette munie d’un filtre pleine ouverture

***Photographie argentique et Webcam au foyer d’une lunette ou d’un télescope

La photographie argentique ou l’imagerie avec une Webcam au foyer primaire (F’1 sur les figures) de l’instrument peuvent être envisagées avec profit pour l’observation de la surface solaire. L’instrument (lunette ou télescope) sera protégé par un filtre pleine ouverture comme décrit pour l’observation à l’oculaire, le récepteur d’image (boitier réflex 24 x 36 mm ou Webcam sans leurs objectifs) se fixant en lieu et place de l’oculaire à l’aide d’un adaptateur, généralement au coulant de 31.75 mm, qui sera spécifique à chaque modèle (environ 40 euros). On gardera à l’esprit que le diamètre du soleil au foyer de la lunette est de 9.3 mm par mètre de focale, et que la dimension du récepteur est complètement différente selon que l’on travaille avec un film 24 x 36 mm ou une Webcam (capteur de l’ordre de 3 x 4 mm). Ainsi, pour une distance focale de 1 m, le soleil sera visible en totalité sur un film 24 x 36 mm et formera un disque de 9.3 mm de diamètre, alors qu’un champ réduit à environ 10 minutes de degrés seulement (un tiers du diamètre solaire) sera visible avec une Webcam. Notons que, selon la dimension du champ souhaité, notamment en photo argentique, il est possible d’allonger la distance focale de l’instrument par l’adjonction d’une lentille de Barlow achromatique 2x (environ 150 euros), permettant de doubler la distance focale, tout en réduisant d’autant les dimensions du champ observable. Avec une Barlow 2x, on aura ainsi une image solaire de 18.6 mm de diamètre par mètre de focale au foyer de l’instrument ; c’est la combinaison idéale pour la photo au format 24 x 36 mm. Avec une Webcam au foyer, on peut tenter l’opération inverse qui consiste à élargir le champ par l’adjonction d’un réducteur focal.

On trouve sur le marché des Webcams vendues avec bague d’adaptation spécifique au coulant de 31.75 mm, qui se monteront à la place de l’oculaire, autour de 150 euros (modèle dérivé de la Toucam de Philips, LPI de Meade, etc…). Les seules Webcams recommandées sont celles dont on peut enlever l’inutile et piètre objectif fourni en standard. Elles se connectent habituellement à un port USB d’un ordinateur qui enregistre les données et fixe les paramètres d’acquisition. Les Webcams, lorsqu’elles sont reconnues comme périphérique d’acquisition de données TWAIN, seront vues de la plupart des logiciels photo, tel le classique « Paint Shop Pro », permettant l’enregistrement dans les formats très variés (TIF, GIF, JPEG, etc…). Si l’on souhaite réaliser à postériori une animation, on veillera à la précision de la mise en station de la monture et à la régularité des prises de vue (par exemple une image toutes les minutes). Les Webcams permettent de travailler avec des temps de pose très courts, ce qui permet de figer la turbulence (1/100 ème de seconde pour un instrument à f/D = 10 et protégé par un atténuateur de densité 5), mais le bruit inhérent à ce type de capteur bon marché nécessitera souvent l’addition de nombreux clichés pour obtenir une image finale de qualité satisfaisante, qui sera par ailleurs limitée à 640 x 480 pixels avec les modèles courants. Il existe pour ce faire une large panoplie de logiciels disponibles, souvent en « freeware », sur les sites internet d’astronomes amateurs.

Avec un film 24 x 36 mm, moins sensible qu’un récepteur électronique, on pourra éventuellement employer un filtre pleine ouverture de densité 4 (ND 4 soit une atténuation de dix mille) de façon à travailler avec des temps de pose courts inférieurs à 1/100 ème de seconde pour figer l’agitation des images. Il existe des atténuateurs ND 4 (Astrosolar par exemple) vendus en feuilles à découper. Mais attention à la confusion possible avec l’atténuateur ND 5 (cent mille), qui seul permet des observations visuelles sans danger pour les yeux.

L’usage de la couleur est en général sans intérêt pour ce type d’observation ; s’il existe des films noir et blanc, par contre on ne trouve pas de modèle de Webcam noir et blanc, mais généralement un mode monochrome de prise de vue est proposé.

Webcam au foyer d'une lunette de 820 mm de distance focale munie d'un filtre pleine ouverture
Webcam au foyer d’une lunette de 820 mm de distance focale munie d’un filtre pleine ouverture

***Photographie avec un appareil photo numérique non réflex derrière l’oculaire ou avec une caméra vidéo

L’utilisation d’un appareil photo numérique, ou d’une caméra vidéo, dont l’objectif est indissociable du boîtier, reste possible derrière un oculaire, l’ensemble constitué de l’oculaire et de l’objectif de l’appareil photo travaillant dans des conditions proches d’un système afocal avec un grandissement égal au rapport de leur distances focales (f3/f2 sur la figure). Le système optique fonctionne donc exactement comme dans l’observation visuelle avec un oculaire, mis à part que l’œil (qui regarde à l’infini) est remplacé par l’appareil photo, son objectif et son capteur jouant respectivement le rôle du cristallin et de la rétine. Pour avoir le maximum de lumière, l’objectif de l’appareil doit être placé près du cercle oculaire, et son diaphragme ouvert. Il pourra être monté sur l’instrument au moyen d’un adaptateur photo numérique universel ou mieux vissé directement sur l’oculaire à l’aide d’un adaptateur spécial, pourvu que l’objectif possède un filetage pour filtres (compter 120 Euros). Il existe aussi sur le marché (William Optics par exemple) des adaptateurs optiques au coulant de 31.75 mm (environ 150 Euros) qui remplacent l’oculaire et sur lesquels on visse directement l’objectif de l’appareil photo ou de la caméra (à condition toutefois qu’ils soient munis d’un filetage pour filtres).

Observation avec un appareil photo numérique ou un caméscope
Observation avec un appareil photo numérique ou un caméscope
(schéma de principe, les proportions ne sont pas respectées)

A titre d’exemple, un oculaire de 20 mm de distance focale couplé à un appareil photo numérique dont le zoom peut varier dans la plage 8 à 24 mm donnera un agrandissement de l’image primaire de l’instrument (diamètre solaire de 9.3 mm par mètre de focale au foyer F’1) allant de 8/20 = 0.4 à 24/20 = 1.2. Connaissant les caractéristiques de l’objectif de l’appareil photo numérique, la focale de l’oculaire (ou de l’adaptateur optique) devra donc être choisie en fonction du grandissement à réaliser, sachant que la dimension des capteurs des appareils photo numériques ordinaires est petite et de l’ordre de 5 mm seulement (mis à part les boîtiers numériques réflex haut de gamme dont l’objectif est amovible et seront donc montés directement au foyer F’1 comme en photographie argentique classique). La taille précise du capteur étant rarement donnée dans les brochures, des essais avec plusieurs combinaisons d’oculaires devront être tentés. Pour obtenir des résultats satisfaisants, les automatismes de l’appareil devront être débrayés, notamment la mise au point (réglée sur l’infini) ainsi que l’exposition (réglage manuel de la vitesse et diaphragme ouvert). La mise au point est difficile avec les appareils numériques non reflex et demandera de nombreux tâtonnements et de la patience.

***Observation en lumière colorée

Dans les précédents paragraphes, nous avons envisagé une observation en lumière blanche, mais atténuée. Il est possible de gagner en contraste en utilisant un filtre « passe bande » coloré vert (longueur d’onde située entre 500 et 540 nm) ou bleu (entre 420 à 480 nm), notamment sur les régions faculaires autour des taches ou encore sur la granulation (mais sa taille caractéristique de 1’’ la rend difficilement accessible). On caractérise un filtre « passe bande » par la longueur d’onde de son pic de transmission et par la largeur à mi hauteur de la courbe en cloche encadrant ce pic, mesurée en nanomètres (nm). Un filtre étroit donnera de meilleurs résultats qu’un filtre large. Les filtres colorés (verre teinté) sont larges (plus de 100 nm) et peu coûteux ; les filtres interférentiels (moins de 20 nm) sont étroits et fourniront un meilleur contraste, mais la dépense sera supérieure. Tous ces filtres (de petit diamètre) se placent au niveau de l’oculaire et ils ne dispensent en aucun cas du filtre pleine ouverture qui doit atténuer la lumière pénétrant dans l’instrument, seul garant de la sécurité oculaire.

Les amateurs désireux d’aller plus loin pourront s’intéresser aux protubérances, voire aux filaments, qui ne sont autres que les protubérances vues en absorption sur le disque solaire. L’observation des protubérances est toujours un grand spectacle, mais il faut pour cela disposer d’un matériel spécifique que l’on appelle filtre Ha. Il s’agit d’un filtre centré sur la raie Ha du spectre solaire, correspondant à la transition quantique entre niveaux d’énergie 2 et 3 de l’atome d’Hydrogène à 656.3 nm (il s’agit de la première raie de la série de Balmer). Un filtre de 0.3 nm de large permet d’accéder aisément à ce type de phénomène. La marque Coronado commercialise des filtres dédiés à cet emploi, composés de deux parties indissociables : l’une se fixe sur l’objectif de l’instrument et remplace ainsi le filtre pleine ouverture, l’autre se place au niveau de l’oculaire. L’observation des filaments est bien plus impérieuse en raison du fond lumineux chromosphérique sous jacent, qui exige une largeur minimale de 0.07 nm de la réponse du filtre centré sur Ha. Un bon contraste nécessite de descendre à moins de 0.05 nm, mais on se trouve alors à la limite entre matériel amateur et professionnel, et le coût s’en ressent !

[/ Jean-Marie Malherbe, Nicole Mein, Observatoire de Paris - 2006 /]